Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1312941

ABSTRACT

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacology , Antiviral Agents/chemistry , Benzimidazoles/pharmacology , COVID-19/virology , Carbamates/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cyclopropanes/pharmacology , Drug Evaluation, Preclinical , Drug Repositioning , Fluorenes/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Proline/analogs & derivatives , Proline/pharmacology , Protein Conformation , Quinoxalines/pharmacology , Sulfonamides/pharmacology
2.
Cells ; 10(5)2021 04 29.
Article in English | MEDLINE | ID: covidwho-1217052

ABSTRACT

The rapid spread of the virus, the surge in the number of deaths, and the unavailability of specific SARS-CoV-2 drugs thus far necessitate the identification of drugs with anti-COVID-19 activity. SARS-CoV-2 enters the host cell and assembles a multisubunit RNA-dependent RNA polymerase (RdRp) complex of viral nonstructural proteins that plays a substantial role in the transcription and replication of the viral genome. Therefore, RdRp is among the most suitable targets in RNA viruses. Our aim was to investigate the FDA approved antiviral drugs having potential to inhibit the viral replication. The methodology adopted was virtual screening and docking of FDA-approved antiviral drugs into the RdRp protein. Top hits were selected and subjected to molecular dynamics simulations to understand the dynamics of RdRp in complex with these drugs. The antiviral activity of the drugs against SARS-CoV-2 was assessed in Vero E6 cells. Notably, both remdesivir (half-maximal effective concentration (EC50) 6.6 µM, 50% cytotoxicity concentration (CC50) > 100 µM, selectivity index (SI) = 15) and ledipasvir (EC50 34.6 µM, CC50 > 100 µM, SI > 2.9) exerted antiviral action. This study highlights the use of direct-acting antiviral drugs, alone or in combination, for better treatments of COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Fluorenes/pharmacology , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Chlorocebus aethiops , Molecular Docking Simulation , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects
3.
F1000Res ; 9: 129, 2020.
Article in English | MEDLINE | ID: covidwho-627045

ABSTRACT

We prepared the three-dimensional model of the SARS-CoV-2 (aka 2019-nCoV) 3C-like protease (3CL pro) using the crystal structure of the highly similar (96% identity) ortholog from the SARS-CoV. All residues involved in the catalysis, substrate binding and dimerisation are 100% conserved. Comparison of the polyprotein PP1AB sequences showed 86% identity. The 3C-like cleavage sites on the coronaviral polyproteins are highly conserved. Based on the near-identical substrate specificities and high sequence identities, we are of the opinion that some of the previous progress of specific inhibitors development for the SARS-CoV enzyme can be conferred on its SARS-CoV-2 counterpart.  With the 3CL pro molecular model, we performed virtual screening for purchasable drugs and proposed 16 candidates for consideration. Among these, the antivirals ledipasvir or velpatasvir are particularly attractive as therapeutics to combat the new coronavirus with minimal side effects, commonly fatigue and headache.  The drugs Epclusa (velpatasvir/sofosbuvir) and Harvoni (ledipasvir/sofosbuvir) could be very effective owing to their dual inhibitory actions on two viral enzymes.


Subject(s)
Benzimidazoles/pharmacology , Betacoronavirus/drug effects , Carbamates/pharmacology , Coronavirus Infections , Cysteine Endopeptidases/chemistry , Fluorenes/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Pandemics , Pneumonia, Viral , Viral Nonstructural Proteins/chemistry , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Drug Repositioning , Humans , Pneumonia, Viral/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL